/W 35 345 730

Report 11185 July 1998



Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report
Subassembly and Complete Instrument Assembly
EOS AMSU-A2 Antenna Drive Subassembly,
P/N 1356006-1, S/N 202

Contract No. NAS 5-32314 CDRL 208

### Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

Aerojet



Report 11185 July 1998

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report
Subassembly and Complete Instrument Assembly
EOS AMSU-A2 Antenna Drive Subassembly,
P/N 1356006-1, S/N 202

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

# AMSU-A VERIFICATION TEST REPORT

TEST ITEM:

EOS AMSU- A2 ANTENNA DRIVE SUBSYSTEM

PART OF P/N: 1356006-1 SERIAL NUMBER: 202

LEVEL OF ASSEMBLY:

SUBASSEMBLY AND COMPLETE INSTRUMENT

**ASSEMBLY** 

TYPE HARDWARE:

**FLIGHT** 

VERIFICATION: PROCEDURE NO.

AE-26002/2C

TEST DATE:

ASSEMBLIES:

START DATE:

27 January 1998

SUBSYSTEM:

START DATE:

19 March 1998

# TABLE OF CONTENTS

# **ITEM**

| 1.0   | INTRODUCTION                         |
|-------|--------------------------------------|
| 2.0   | SUMMARY                              |
| 3.0   | TEST CONFIGURATION                   |
| 4.0   | TEST SETUP                           |
| 5.0   | TEST RESULTS                         |
| 5.1   | REFLECTOR DRIVE ASSEMBLY             |
| 5.2   | CIRCUIT CARD ASSEMBLIES              |
| 5.3   | SIGNAL PROCESSOR                     |
| 5.4   | TRANSISTOR ASSEMBLY                  |
| 5.5   | ANTENNA DRIVE SUBSYSTEM TESTS        |
| 5.5.1 | SCAN MOTION AND JITTER               |
| 5.5.2 | NOISY BUS PEAK CURRENT AND RISE TIME |
| 5.5.3 | RESOLVER READING AND POSITION ERROR  |
| 5.5.4 | GAIN/PHASE MARGIN                    |
| 5.5.5 | OPERATIONAL GAIN MARGIN              |
| 6.0   | CONCLUSIONS AND RECOMMENDATIONS      |
| 7.0   | TEST DATA                            |

#### 1.0 INTRODUCTION

An antenna drive subsystem test was performed on the AMSU-A2 S/N 202 instrument. The objective of the test was to demonstrate compliance with applicable paragraphs of AMSU-A specifications S-480-80. Tests were conducted at both the subassembly and instrument level.

#### 2.0 SUMMARY

The antenna drive subsystem of the EOS AMSU-A2 S/N 202, P/N 1356006-1, completed acceptance testing per AES Test Procedure AE-26002/2C. The test included: Scan Motion and Jitter, Noisy Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/Phase Margin, and Operational Gain Margin.

The drive motor and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356433-1) test. Refer to Figure 1 for test flow.



Antenna Subsystem and Subsystem Component Test Flow Figure 1.

The antenna drive subsystem satisfactorily passed all of the performance requirements. There were no failures in any of the antenna drive components during subsystem testing.

The results of the subsystem and component level testing are discussed in more detail in the following sections:

| Reflector Drive Assembly | 5.1 |
|--------------------------|-----|
| Circuit Card Assemblies  | 5.2 |
| Signal Processor         | 5.3 |
| Transistor Assembly      | 5.4 |
| Antenna Drive Subsystem  | 5.5 |

#### 3.0 TEST CONFIGURATION

The *Reflector Drive Assembly Tests* confirm the operability of the motor under test. The test configuration includes, the motor, motor shaft, bearings, and a supporting housing.

The *Circuit Card Assembly (CCA) Tests* confirm the operability of each CCA. Each test includes the CCA under test, electronic test fixtures, and the necessary loads.

A segment of the *Signal Processor Tests* ensures the scan drive electronics are functioning properly prior to it's assembly into the instrument. The test configuration includes:

- Timing and Control CCA
- Scan Control Interface CCA
- Mux/ Relay Control CCA
- Interface Converter CCA
- Resolver Data Isolator CCA
- R/D Converter CCA
- Motor Driver CCA
- Test fixture and cabling to simulate the 1553 bus interface
- Test fixture and cabling to interrogate and analyze positional data
- Test motor and inertia wheel

The *Transistor Assembly Test* verifies the correct wiring of the transistor assembly and associated cabling. Test configuration includes the CKT 1000 (continuity and Hi-Pot tester), and test fixtures.

The Antenna Drive Subsystem Tests:

- Are configured with the same motor control CCA's used in the signal processor test, interconnecting wiring, the power transistor assembly, and the drive assembly with reflector.
- The antenna drive subsystem components were all installed in the instrument when the subsystem test was performed.
- DC power for the motor control circuit cards was provided by a DC/DC converter simulator P/N: 1359322-1. The simulator operates on 120VAC facility supplied

power. The power for the reflector motor drive circuits however was provided directly by the STE Noisy Bus power supply.

#### 4.0 TEST SETUP

The antenna drive subsystem tests are performed during system integration. During system integration testing, the instrument is proven electrically safe via ground isolation, and power distribution checks. Next, the communication link is exercised to ensure commands are received and interpreted correctly. The Antenna Drive Subsystem Test is then performed.

#### 5.0 TEST RESULTS

The Antenna Drive Subsystem components designated for use in the EOS AMSU-A2 instrument are shown in Table 1. During preliminary testing of these components (in preparation for the antenna drive subsystem test), several component failures occurred. The component failures and system related dispositions are listed below:

- Reflector Drive Motor replaced a suspected failed (or weakened) bearing after vibration testing.
- **Reflector Drive Motor** replaced a broken stator clamp. The clamp was replaced with a more robust design.

| CCA                                | S/N |
|------------------------------------|-----|
| Resolver Data Isolator Assembly    | F19 |
| Interface Converter Assembly       | F21 |
| Motor Driver Assembly              | F10 |
| R/D Converter/ Oscillator Assembly | F07 |

| OTHER                          | S/N |
|--------------------------------|-----|
| Reflector Drive Motor (A2)     | F03 |
| Signal Processor               | F01 |
| Transistor Assembly (W3 cable) | N/A |

Table 1.

EOS AMSU-A2 S/N:202 Antenna Subsystem Component S/N Designations

All other components designated for use in the EOS AMSU-A2 instrument (pertaining to the scan drive circuitry) passed on the first time through component testing.

#### 5.1 REFLECTOR DRIVE ASSEMBLY

The tests performed on this unit are: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The Motor Commutation and Resolver Operation tests are performed both pre and post-vibration.

### **Starting Torque**

The starting torque test is performed on the rotating segment of the drive assembly to verify the torque associated with bearing friction. The reflector drive assembly (F03) passed the starting torque test at ambient temperature as well as at the colder plateaus.

#### **Motor Commutation Test**

This test is performed to determine the commutation characteristics of the motor under test. The reflector drive assembly (F03) passed the motor commutation test both pre- and post-vibration tests without incident.

#### Resolver Operation/ No-Load Speed Test

This test is performed to verify resolver operation as well as speed characteristics and back electromotive force of the motor. The reflector drive assembly (F03) passed the resolver operation/ no-load speed test both pre- and post-vibration tests without incident.

#### Random Vibration

During the -6db level random vibration a significant change in resonant frequency was observed. An anomaly was found relating to the bearing installation; although the bearing was installed properly, it was determined that the torque value is too low. The process was changed to increase the torque on the bearing during installation.

When reassembled, the motor was re-vibrated without incident.

The reflector drive assembly passed the pre- and post-vibration electronic tests as well as the post-vibration visual inspection without incident.

### 5.2 CIRCUIT CARD ASSEMBLIES

Test procedures were prepared for each motor control circuit card; document revision status is controlled by reference in the shop order. The cards were individually tested to the procedures and results were recorded on data sheets found in Appendix A. The following list indexes the CCA Test Data Sheets:

- Appendix A1 ...... Resolver Data Isolator Assembly
- Appendix A2..... Interface Converter Assembly
- Appendix A3..... Motor Driver Assembly
- Appendix A4......R/D Converter/ Oscillator Assembly

All circuit card assemblies passed testing the first time through. The assembly build shop orders contain the part number and accept tag record the of test and select resistors.

#### 5.3 SIGNAL PROCESSOR

For the first time, the entire antenna drive motor electronics is mated together. The test instrumentation commands and interrogates the electronics during this segment of testing. The instrumentation sends position commands to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The test motor (instrumentation) responds to the drive signal and feeds back positional data via resolver outputs. The instrumentation then interrogates the Resolver Data Isolator CCA for position data. A comparison is made in the instrumentation between the position command sent and the actual position received. The pass/ fail indication is presented to the operator for test data sheet recording.

The signal processor assembly (F01) passed all scan drive tests.

#### 5.4 TRANSISTOR ASSEMBLY

All transistor assemblies are tested along with their respective W3 cable. The cable is continuity, then hi-pot tested prior to attaching the transistor circuitry. Each transistor pair is exercised validating the turn on voltage, current drawn, and cable wiring as well.

Prior to applying power to the transistor assembly designated for the EOS AMSU-A2 instrument, it was noted that the transistors were wired improperly. The assembly was rewired in accordance with the corrected planning. Tests results were positive; all components operated as designed.

#### 5.5 ANTENNA SUBSYSTEM DRIVE TESTS

The antenna drive motor electronics mates with the instrument microprocessor for the first time during this segment of testing. The microprocessor sends position commands from the memory CCA to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The Reflector Drive Motor responds to the drive signals and feeds back positional data via the resolver outputs. The microprocessor then interrogates the Resolver Data Isolator CCA for position data.. The microprocessor in turn communicates with the 1553 interface which subsequently relays positional data to the STE.

During other segments of the test, positional data is monitored via a potentiometer attached to the shaft of the reflector drive assembly. This provides scan characteristic information in regard to overshoot, jitter, and beam position transition timing.

The remaining paragraphs in this section discuss tests that ensures the instrument complies with specific operating parameters. Prior to conducting these tests there is a

series of preliminary checks that are run to select component values that customize the operating parameters of the instrument. These checks perform the following functions:

- Program "on board" memory with Beam Position Pointing Angles
- Adjust for peak Motor Current Limits
- Observe Preliminary Scan Dynamics
- Identify Mechanical Resonant Frequencies

**Beam Position Pointing Angles** are calculated from Nadir pointing direction which is determined on the antenna range. The instrument's EPROMs (EPROMs for testing; PROMs for final configuration) are programmed to reflect the position commands. The initial programming may require fine tuning; fine tuning is determined during the remaining segments of the test procedure. (Subsequent tests showed the EOS AMSU-A2 instrument required beam pointing direction correction at only one position.)

Motor Current Limits were adjusted, via selecting "test and select" resistors, to comply with the specification requirement; less than 1 amp peak current.

**Preliminary Scan Dynamics** looked good; transition times, overshoot and jitter were all acceptable at the sampled pointing directions (5).

The *Mechanical Resonant Frequencies* were identified; notch filters were calculated and installed to compensate for these resonant frequencies.

#### 5.5.1 SCAN MOTION AND JITTER

In this test, the antenna position was measured in a series of five 8-sec full scans. The measurement was made with a 1-turn test potentiometer temporarily affixed to the rear end of the motor shaft. A Dynamic Signal Analyzer (DSA) was connected to the pot wiper to record the antenna position data. Five scans were captured and stored on the AMSU-A2 Test Data File disc. One representative waveform is presented in Appendix B1.

Each 3.33 degrees scene step was expanded and checked for a 42 msec max step time, and the 158 msec integration period. Expanded waveforms were plotted and are presented in Appendix B2 thru B30. All of the scene steps meet the step response requirement for transition time, overshoot, and jitter.

Slew periods to the cold and warm calibration stations were measured and met requirements. A time of 0.21 sec is allocated for the 35.0 degree slew to cold cal, and 0.40 sec for the 96.67 degree slew to warm cal. Calibration station jitter was less than the  $\pm$  5 % maximum permitted. Expanded waveforms were plotted and are presented in Appendix B31 thru B34. The waveforms are also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix B35

### 5.5.2 NOISY BUS PEAK CURRENT AND RISE TIME

The noisy pulse load bus peak current and the rate of change of current were measured. The peak current must be less than 1A at any beam position along the scan. Peak current along the scan is .984A. The current rate of change while transitioning from one beam position to the next (including the transition to the cold calibration and warm calibration targets) should be greater than 70 microseconds. A random 3.33° step was selected; the transition to the next step was 1.2 ms. The transition to the warm cal position start and stop was significantly longer than the required 70 ms; 1.95 and 2.30 ms respectively.

The peak bus current was measured across the entire scan and met the requirement. The full scan waveform was plotted and is presented in Appendix C1. The waveform is also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix C2

#### 5.5.3 RESOLVER READING AND POSITION ERROR

The 14-bit command position word is stored in the "on-board" memory and is read to the motor drive circuitry under microprocessor program control. The microprocessor also reads the resolver output at each of the thirty scene stations, and at the cold and warm calibration positions. The readings are made at the start of integration (LOOK 1), and halfway into the integration period (LOOK 2). The resolver data is sent to the 1553 bus interface for subsequent transmission to the STE.

The purpose of this portion of the test is to demonstrate that the antenna is meeting beam pointing requirements.

If the antenna is out of the pointing tolerance of  $> \pm 10$  counts at LOOK 1 or  $> \pm 5$  counts at LOOK 2, the EPROM is reprogrammed to bring the pointing direction to within the prescribe tolerances. A copy of the STE computer print out showing the pointing direction is shown in Figure 2.

|    |                   | Ac     | tual  | Differ | ence* |
|----|-------------------|--------|-------|--------|-------|
| BP | Command           | Look 1 | Look2 | Look 1 | Look2 |
| 1  | 8035              | 8033   | 8033  | 2      | 2     |
| 2  | 7883 <sup>-</sup> | 7882   | 7882  | 1      | 1     |
| 3  | 7731              | 7730   | 7730  | 1      | 1     |
| 4  | 7580              | 7579   | 7581  | 1      | -1    |
| 5  | 7428              | 7426   | 7428  | 2      | 0     |
| 6  | 7276              | 7276   | 7277  | 0      | 7     |
| 7  | 7125              | 7124   | 7125  | 1      | 0     |
| 8  | 6973              | 6969   | 6974  | 4      | 7     |
| 9  | 6821              | 6817   | 6821  | 4      | 0     |
| 10 | 6670              | 6665   | 6670  | 5      | 0     |
| 11 | 6518              | 6517   | 6519  | 1      | -1    |
| 12 | 6366              | 6365   | 6367  | 1      | -     |
| 13 | 6215              | 6214   | 6217  | 1      | -2    |
| 14 | 6063              | 6063   | 6065  | 0      | -2    |
| 15 | 5911              | 5910   | 5912  | 1      | -1    |
| 16 | 5760              | 5758   | 5760  | 2      | 0     |

|      |         | Actual |       | Differ | ence* |
|------|---------|--------|-------|--------|-------|
| BP   | Command | Look 1 | Look2 | Look 1 | Look2 |
| 17   | 5608    | 5605   | 5610  | 3      | -2    |
| 18   | 5456    | 5452   | 5457  | 4      | -1    |
| 19   | 5305    | 5300   | 5305  | 5      | 0     |
| 20   | 5153    | 5152   | 5154  | 1      | -1    |
| 21   | 5001    | 5000   | 5002  | 1      | -1    |
| 22   | 4850    | 4848   | 4851  | 2      | -1    |
| 23   | 4698    | 4697   | 4699  | 1      | -1    |
| 24   | 4546    | 4545   | 4547  | 1      | -1    |
| 25   | 4395    | 4393   | 4394  | 2      | . 1   |
| 26   | 4243    | 4238   | 4243  | 5      | 0     |
| 27   | 4091    | 4088   | 4092  | 3      | -1    |
| 28   | 3940    | 3936   | 3939  | 4      | 1     |
| 29   | 3788    | 3786   | 3788  | 2      | 0     |
| 30   | 3636    | 3635   | 3637  | 1      | -1    |
| CC 1 | 2043    | 2042   | 2043  | 1      | 0     |
| WC   | 14028   | 14029  | 14028 | -1     | 0     |

<sup>\*</sup> Difference between Command and Actual

Figure 2. Beam Position Pointing Directions and Error Calculation

#### 5.5.4 GAIN/PHASE MARGIN

A gain/phase margin test was performed on the antenna drive subsystem. The test was performed by obtaining a Bode plot of the control loop and measuring the gain at 180° phase differential and the phase margin at the 0db crossover point.

The Dynamic Signal Analyzer (DSA) was used to make the measurement operating in the swept sine mode. Three separate Bode plots were made on the antenna and the gain and phase margins were determined from each plot. The gain margin measured was 12.2 db (average of three) and the phase margin measured was 65 degrees (average of three). These margins exceed the specification requirements of 12 db and 25 degrees and therefore are acceptable. The three Bode waveforms were plotted and are presented in Appendix D1 thru D3. The waveforms are also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix D4.

#### 5.5.5 OPERATIONAL GAIN MARGIN

An operational gain margin test was performed on the instrument three times. This test consists of increasing the gain of the control loop until oscillation occurs. The gain increase and frequency of oscillation are measured. An increase in gain greater than 9 db is required; the frequency of oscillation is an observation.

A 50K pot was connected in series with the R58 feedback resistor on amplifier AR8. The resistance of the test pot was slowly added to the feedback resistor while observing the reflector for oscillations.

The reflector begins to produce an audible sound as gain is increased. The following added resistance values are calculated to have the following gain margins:

| Resistance | Gain   |
|------------|--------|
| 38.23      | 9.1 db |
| 40.70      | 9.4 db |
| 38.47      | 9.1 db |

The first mode mechanical resonance of the shaft and reflector is about 164 Hz as shown in the power spectrum. The power spectrum waveform was plotted and is presented in Appendix E1. The waveform is also stored on the AMSU-A2 Test Data File disc. The test data sheet is presented in Appendix E2.

### 6.0 <u>CONCLUSION</u>

Based on the test results, it can be concluded that the EOS AMSU-A2 S/N 202 antenna drive subsystem meets the AMSU-A specification requirements.

#### 7.0 TEST DATA

Test data for the AMSU-A2 S/N 202 obtained in the antenna drive subsystem test is attached. Data sheet number and type of test is shown in the following Appendix Index.

# APPENDIX INDEX

| Appendix A1Resolver Data Isolator CCA TDS          |
|----------------------------------------------------|
| Appendix A2 Interface Converter CCA TDS            |
| Appendix A3 Motor Driver CCA TDS                   |
| Appendix A4R/D Converter/ Oscillator CCA TDS       |
| Appendix B1Full Scan Step Response                 |
| Appendix B2 thru B30Single Step Responses          |
| Appendix B31 and B32Cold Calibration Step Response |
| Appendix B33 and B34Warm Calibration Step Response |
| Appendix B35Scan Motion Jitter Test TDS            |
| Appendix C1Peak Pulse Load Bus Current Waveform    |
| Appendix C2Pulse Load Bus Current TDS              |
| Appendix D1 thru D3Gain/ Phase Margin Bode Plots   |
| Appendix D4Gain/ Phase Margin TDS                  |
| Appendix E1Operational Gain Margin Power Spectrum  |
| Appendix E2Operational Gain Margin TDS             |

AE-26693A 10 Feb 97

### TEST DATA SHEET B-6 (Sheet 1 of 2)

# RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

Date:

4114197

S/N:

F19

133497Z-1 6.6.7.1 <u>Supply Voltages</u>

| Supply*  | Measured Value (V) | Limits (Vdc) | Pass/Fail |
|----------|--------------------|--------------|-----------|
| +5 V (I) | 5.00               | ± 0.25       | P         |
| +5 V (U) | 5.03               | ± 0.25       | f         |

### 6.6.7.2 Supply Currents

Steps 1 and 2:

| Supply*  | Measured Value (mA) | Limits (mA) | Pass/Fail |
|----------|---------------------|-------------|-----------|
| +5 V (I) | 53.19               | 100 max     | P         |
| +5 V (U) | 320.00              | 400 max     | e         |

Steps 3 and 4:

DL

| Supply*  | Measured Value (mA) | Limits (mA) | Pass/Fail |
|----------|---------------------|-------------|-----------|
| +5 V (I) | 83.28               | 150 max     | P         |
| +5 V (U) | 12.01               | 30 max      | P         |

<sup>\*</sup> I = Isolated, U = Unisolated

### 6.6.7.3 Resolver Data

| Bit No.            | Pass/Fail |
|--------------------|-----------|
| API 0 - AP Bit 0   | ρ         |
| API 1 - AP Bit 1   | l P       |
| API 2 - AP Bit 2   | P         |
| API 3 - AP Bit 3   | ρ         |
| API 4 - AP Bit 4   | Ρ         |
| API 5 - AP Bit 5   | ρ         |
| API 6 - AP Bit 6   | P         |
| API 7 - AP Bit 7   | P         |
| API 8 - AP Bit 8   | P         |
| API 9 - AP Bit 9   | Р         |
| API 10 - AP Bit 10 | P         |
| API 11 - AP Bit 11 | ρ         |
| API 12 - AP Bit 12 | P         |
| API 13 - AP Bit 13 | P         |

#### 6.6.7.4 Converter Busy Pulse

| 15.0 +3.6 15.15 ±3.0 P | Converter Busy Pulse | Measured Value (μsec) | Limits (µsec) | Pass/Fail |
|------------------------|----------------------|-----------------------|---------------|-----------|
|                        | 15.0                 | 13.60 15.15           | ± 3.0         | P         |

4/16/97

# TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

| Comments: NON | E                                       |                                        |            |  |
|---------------|-----------------------------------------|----------------------------------------|------------|--|
|               |                                         |                                        |            |  |
|               |                                         | ·                                      |            |  |
|               |                                         |                                        |            |  |
|               |                                         |                                        |            |  |
|               |                                         |                                        |            |  |
|               |                                         |                                        |            |  |
|               |                                         |                                        |            |  |
|               |                                         |                                        | 1          |  |
| Conducted by: | Derniden                                | 4/14/9                                 | <u> 17</u> |  |
| Verified by:  | Test Engineer Quality Control Inspector | Date Date                              | 97         |  |
| Approved by:  | DCMC                                    | $\int_{\text{Date}} \frac{f/(\xi)}{f}$ | 9.7        |  |

AE-26693A - 10 Feb 97

### TEST DATA SHEET B-13 (Sheet 1 of 3)

### INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date:

5/1/97

CCA S/N: F21 1331697-1

6.13.7.1 Supply Voltages

| Supply   | Measured Value (Vdc) | Limits (Vdc) | Pass/Fail |
|----------|----------------------|--------------|-----------|
| +5V (U)  | +4,98V               | +5V± 0.05    | P         |
| +15V (I) | +15.03V              | +15V± 0.15   | P         |
| -15V (I) | -15,02V              | -15V± 0.15   | ρ         |
| +5V (I)  | + 5.00V              | +5V± 0.05    | P         |

### 6.13.7.2 Supply Currents

Step 1 (CP and API Low):

| Supply   | Measured Value (mA) | Limits (mA) | Pass/Fail |
|----------|---------------------|-------------|-----------|
| +5V (U)  | 86.31 mg            | 70 - 110    | ٩         |
| +5V (I)  | 3.33 KA             | 1.5 - 5.5   | P         |
| +15V (I) | 17.75 mA            | . 15 - 23   | ۴         |
| -15V (I) | 20.50 MA            | 18 - 26     | P         |

### Step 2 (CP and API High):

| Supply   | Measured Value (mA) | Limits (mA) | Pass/Fail |
|----------|---------------------|-------------|-----------|
| +5V (U)  | 56.32 mg            | 40 - 70     | P         |
| +5V (I)  | 23.75 mA            | 18 - 30     | f         |
| +15V (I) | 17.74 nA            | 15 - 23     | R         |
| -15V (I) | 20.50 mA            | 18 - 26     | 8         |

# 6.13.7.3 Amplifier Offsets

| Amplifier | Measured Value (mV) | Limits (mV) | Pass/Fail |
|-----------|---------------------|-------------|-----------|
| AR1       | - 0.05 hV           | 0.0 ±0.15   | P         |
| AR2       | - 0 42 hV           | 0.0 ±2.0    | P         |

# TEST DATA SHEET B-13 (Sheet 2 of 3)

# INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

### 6.13.7.4 Subtraction and D-A Conversion

# Step 1:

| Actual Position (API)                   | Command Position (CP) | ARI Output*            | Test Result |           |
|-----------------------------------------|-----------------------|------------------------|-------------|-----------|
| MSB LSB                                 | MSB LSB               | Voltage Required (Vdc) | (Vdc)       | Pass/Fail |
| 0000000000000                           | 0000000000000         | 0.00000                | -0.00005    | P         |
| 0000000000001                           | 00000000000000        | -0.00061               | -0.00067    | P         |
| 000000000000000000000000000000000000000 | 00000000000000        | -0.00122               | -0. co 3    | P         |
| 0000000000011                           | 00000000000000        | -0.00184               | -0-06196    | P         |
| 0000000000100                           | 0000000000000         | -0.00245               | -0.00259    | P         |
| 0000000001000                           | 00000000000000        | -0.00490               | -0.00513    | <u> </u>  |
| 0000000010000                           | 00000000000000        | -0.00979               | -0.01023    | P         |
| 0000000100000                           | 00000000000000        | -0.01958               | -0.02043    | P         |
| 0000001000000                           | 00000000000000        | -0.03917               | -0.04083    | P         |
| 00000010000000                          | 00000000000000        | -0.07834               | _ 0. c8i 63 | P         |
| 00000100000000                          | 00000000000000        | -0.15667               | - 0.16324   | P         |
| 00001000000000                          | 0000000000000         | -0.31334               | - 032649    | P         |
| 00010000000000                          | 00000000000000        | -0.62669               | -0.65305    | P         |
| 00100000000000                          | 00000000000000        | -1.25338               | -1.3061     | P         |
| 01000000000000                          | 00000000000000        | -2.50675               | -2.6123     | P         |
| 10000000000000                          | 00000000000000        | -5.01350               | -5.2247     | ₽         |

<sup>\*</sup> Tolerance on output voltage is ± 10%

# Step 2:

| Actual Position (API) | Command Position (CP) | ARI Output*            | Test Result |           |
|-----------------------|-----------------------|------------------------|-------------|-----------|
| MSB LSB               | MSB LSB               | Voltage Required (Vdc) | (Vdc)       | Pass/Fail |
| 00000000000000        | 00000000000000        | 0.00000                | -0.00004    | P         |
| 00000000000000        | 0000000000001         | 0.00061                | 40.00c55    | P         |
| 00000000000000        | 0000000000010         | 0.00122                | + 0.00/16   | P         |
| 00000000000000        | 0000000000011         | 0.00184                | +0.00173    | P         |
| 00000000000000        | 00000000000100        | 0.00245                | 10.00243    | P         |
| 00000000000000        | 0000000001000         | 0.00490                | 10.60498    | P         |
| 00000000000000        | 000000000100000       | 0.00979                | 40.01012    | 8         |
| 00000000000000        | 0000000100000         | 0.01958                | 10.02031    | P         |
| 00000000000000        | 00000001000000        | 0.03917                | +0.04073    | ρ         |
| 00000000000000        | 00000010000000        | 0.07834                | to.cgis3    | <u></u>   |
| 00000000000000        | 0000010000000         | 0.15667                | 10.16322    | P         |
| 00000000000000        | 00001000000000        | 0.31334                | 10.32653    | P         |
| 00000000000000        | 00010000000000        | 0.62669                | +0.65369    | P         |
| 00000000000000        | 00100000000000        | 1.25338                | 41.3061     | P         |
| 00000000000000        | 01000000000000        | 2.50675                | H2. 6122    | P         |
| 00000000000000        | 10000000000000        | -5.01350               | -5.2248     | P         |

<sup>\*</sup> Tolerance on output voltage is ± 10%

# TEST DATA SHEET B-13 (Sheet 3 of 3)

# INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

| 6.13.7.5 Strobe Function                                                                             |
|------------------------------------------------------------------------------------------------------|
| Step 1: <u>Strobe Low</u> Pass/Fail                                                                  |
| No E11 Change with Input CP Changes                                                                  |
| Step 2: Strobe High Pass/Fail                                                                        |
| E11 Change with Input CP Changes                                                                     |
| 6.13.7.6 Amplifier Gain                                                                              |
| E11 Measured Value (Vdc)  Limits (Vdc)  Pass/Fail  P                                                 |
| E10 3.5899 - P                                                                                       |
| E10 Voltage 11. 0 10.7 - 11.3 P                                                                      |
| 6.13.7.7 Ground Isolation                                                                            |
| Measured Value (MΩ)       Limits (MΩ)       Pass/Fail         Pin 91 to Pin 7       S20 MN       >20 |
| Comments:                                                                                            |
| NONE                                                                                                 |
| Conducted by: S/1/91  Test Engineer  Date                                                            |
| Verified by:  Quality Control Inspector  Date  5/8/97  Date                                          |
| Approved by:  Delvic  Date  Date                                                                     |

### TEST DATA SHEET B-4 (Sheet 1 of 2)

# MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N:

F10 4/11/91

Date:

1331694-4

6.4.3.2 Input Signal Offset

| Step No. | Test Results | Limits      |
|----------|--------------|-------------|
| 4        | 1.35 mV      | 0.0 ±1 mVdc |
| 6        | 1. 29mV      | 0.0 ±1 mVdc |
| 8        | 1.24mV       | 0.0 ±1 mVdc |

| Step No. | Test Resistor | Resistance Measured |
|----------|---------------|---------------------|
| 13       | E7-E8 (R25)   | 3.4k                |
|          | E9-E10 (R52)  | 5.41K               |
|          | E11-E12 (R33) | 3.40 K              |
|          | E13-E14 (R53) | 5.50 K              |
|          | E15-E16 (R42) | 3.40 K              |
|          | E17-E18 (R54) | 5.30 K              |

| Step No. | Resistors | Selected Trim Resistors |
|----------|-----------|-------------------------|
| 14       | R25       | RNC5553401FS            |
|          | R52       | RNC 55 75621FS          |
|          | R33       | RNC55J3401FS            |
|          | R53       | RNC 55 J 5621 FS        |
|          | R42       | RNC55J3401FS            |
|          | R54       | RNC 55 J 5 231 FS       |

| Step No. | E Point | Test Results | Limits      | Pass/Fail |
|----------|---------|--------------|-------------|-----------|
| 19       | E19     | -0.09mV      | 0.0 ±1 mVdc | P         |
| ' }      | E20     | - 0.08 mV    | 0.0 ±1 mVdc | P         |
| -        | E21     | +0.07mV      | 0.0 ±1 mVdc | P         |

# 6.4.3.3 Motor Driver Operation

### Clockwise Rotation:

| Step No. | Test Results | Limits       | Pass/Fail |
|----------|--------------|--------------|-----------|
| 2        | 5.001V       | +5V±0.05Vdc  | ₽         |
| -        | 49mA         | 70mAdc max   | P         |
| ì        | 15,074 V     | +15V±0.15Vdc | P         |
|          | IMA          | 3.0mAdc max  | 1 8       |
|          | -15,001 V    | -15V±0.15Vdc | PP        |
|          | 18 m A       | 25mAdc max   | P         |
|          | 28.033 V     | +28V±0.5Vdc  | P         |
|          | 6 mA         | 8mAdc max    | P         |
| 3        | 1.42mV       | 400mVdc max  | P         |
| 4        | 41 mA        | 50mAdc max   | P P       |
| 5        | HTMA         | 50mAdc max   | P         |

AE-26693A 10 Feb 97

# TEST DATA SHEET B-4 (Sheet 2 of 2)

# MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

### Counter Clockwise Rotation:

| Step No. | Test Results | Limits      | Pass/Fail |
|----------|--------------|-------------|-----------|
| 3        | 270 mV       | 400mVdc max | P         |
| 4        | 36 m A       | 50mAdc max  | p         |
| 5        | 39 mA        | 50mAdc max  | P         |

### 6.4.3.4 Current Limit Test

| Step No. | Test Results | Limits      | Pass/Fail |
|----------|--------------|-------------|-----------|
| 2        | 435 MA       | 350-500mAdc | P         |

| NONG                                  |       |
|---------------------------------------|-------|
| · · · · · · · · · · · · · · · · · · · |       |
|                                       |       |
|                                       | <br>_ |

Conducted by:

Test Engineer

4/17/97

Verified by:

Quality Control Inspector

04/28/97

Approved by:

Date

### TEST DATA SHEET B-5 (Sheet 1 of 3)

# R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date 5/14/17 CCA S/N F & 7 1337731-2 6.5.7.1 UUT Pre-Test

Step 2:

# Supply Currents (Without UUT)

| Supply (Vdc) | (Baseline) Measured Value (mA)<br>(Without UUT) | Limits (mA) | Pass/Fail |
|--------------|-------------------------------------------------|-------------|-----------|
| +15          | 0.06                                            | 0-1         | P         |
| -15          | -0.28                                           | -1 - 0      | P         |
| +5           | 0.06                                            | 0-1         | P         |

### Supply Voltages (Without UUT)

| Supply   | Measured Value (V) | Limits (V) | Pass/Fail |
|----------|--------------------|------------|-----------|
| +15V (I) | 15.02 V            | ± 0.50     | P         |
| -15V (I) | -15, OIV           | ± 0.50     | P         |
| +5V (I)  | 5.034              | ±0.25      | P         |

Step 6:

# Supply Currents (UUT Installed)

| Supply (Vdc) | Measured Value (mA) (UUT Installed) | Difference (mA)<br>(Measured - Baseline) | Limits (mA) | Pass/Fail |
|--------------|-------------------------------------|------------------------------------------|-------------|-----------|
| +15          | 31.96 mA                            | 31.9 mA                                  | 20-40       | P         |
| -15          | -36.74 MA                           | -36.46 mA                                | -3050       | P         |
| +5           | 50.85mA                             | 50.79 mA                                 | 30-70       | P         |

### 6.5.7.2 Supply Voltages (UUT Installed)

| Supply   | Measured Value (V) | Limits (V) | Pass/Fail |
|----------|--------------------|------------|-----------|
| +15V (I) | 15.01V             | ± 0.50     | - p       |
| -15V (I) | -14.91V            | ± 0.50     | P         |
| +5V (I)  | 5.02V              | ±0.25      | P         |

### 6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

| Parameter      | Measured Value | Limits       | Pass/Fail |
|----------------|----------------|--------------|-----------|
| Frequency      | 1603 HZ        | 1550-1650 Hz | P         |
| Duty Cycle     | 52 90          | 45-55 %      | 1 9       |
| Output Voltage | 8-04 VRMS      | 7.6-8.4 Vrms | P         |

AE-26693A \$\$10 Feb 97

### TEST DATA SHEET B-5 (Sheet 2 of 3)

### R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|
| 6.5.7.4 <u>R-D C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Converter Operation                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |               |
| Step 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                                    |               |
| 0.0p 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit Number/                                                                                                                                      | CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Fixture Label                                                                                                                               | Pass/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pass/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 0/1                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 1/2                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 2/3                                                                                                                                          | P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 3/4                                                                                                                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 4/5                                                                                                                                          | P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 5/6                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 6/7                                                                                                                                          | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 7/8                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 8/9<br>API 9/10                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 10/11                                                                                                                                        | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | •             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 11/12                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 12/13                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | API 13/14                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Converter Busy                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | **            |
| Step 2: Wnst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                  |               |
| 3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97                                                                                                                                               | Calculated Value (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dc) *   Calculated V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alue (Vdc) *                                         | Pass/Fail     |
| Step 2: WMAH<br>3-4<br>PES RSQ-<br>RS (E10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | Calculated Value (V<br>CCA - 1 Assy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy                                               | Pass/Fail     |
| カー4<br>PES-RSの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97 Measured Value                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy<br><b>(</b>                                   | Pass/Fail     |
| PES RS D<br>PES RS D<br>PES (E10)<br>CW Rotation**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measured Value (Vdc) + 1.712 0                                                                                                                   | CCA - 1 Assy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 Assy<br><u>(</u>                                   | P             |
| PES RS 9 PES | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration                                                                                 | CCA -1 Assy  N/A  Rain resistors. Record ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCA - 1 · 78 9   - 1 · 78 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Assy  C  Beasured value.                           | P<br>Measured |
| PES RS 9 PES | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate                                                       | CCA - I Assy  N/A  gain resistors. Record ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy  6 easured value.                             | P<br>Measured |
| PES RS 9 PES | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration                                                                                 | CCA - I Assy  N/A  gain resistors. Record ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy  6 casured value.  4 foelo  = \$9 k           | Measured Plan |
| PES RS 0 PES | Measured Value (Vdc) $+1.7200$ $-1.7120$ ion of test and calibration n ±10 percent of calculate $\sqrt{20.155}$                                  | CCA - I Assy  N/A  gain resistors. Record ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy  6 easured value.                             | Measured Plan |
| PES RS PES PES PES PES PES PES PES PES PES PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate                                                       | gain resistors. Record cand value. The second cand value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy  6 casured value.  4 foelo  = \$9 k           | P<br>Measured |
| PES RS PES PES PES PES PES PES PES PES PES PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured Value (Vdc)  +1.7120  -1.7120  ion of test and calibration $\pm 10$ percent of calculate $\sqrt{=0.155}$                                | gain resistors. Record cand value. The second cand value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy  6 6 easured value.  4 foelo  = \$9 k         | Measured Plan |
| PES RS PES PES PES PES PES PES PES PES PES PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measured Value (Vdc) $+1.7200$ $-1.7120$ ion of test and calibration n ±10 percent of calculate $\sqrt{20.155}$                                  | gain resistors. Record cand value. The second cand value with the second cand value. The second cand value with the second cand value with the second cand value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy 6 easured value.  = 59 k 7 = 5.11 k Pass/Fail | Measured Pian |
| PES RS PES RS PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate  = 20.155 ifier Gain  PES-RS                          | gain resistors. Record cand value. The second cand value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy 6 6 easured value foelo = 59k 1 = 5.11k       | Measured Pian |
| PES RS OPES RS | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate  = 0.155 ifier Gain  PES-RS +0.300 Vdc                | gain resistors. Record cand value. The second cand value. The second cand value (Vdc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Assy 6 easured value.  = 59 k 7 = 5.11 k Pass/Fail | Measured Pian |
| PES RS PES RS PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate  = 20.155 ifier Gain  PES-RS                          | gain resistors. Record cand value. The second cand value. The second cand value (Vdc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA - 1.78 9  - 1.78 9  - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 | 2 Assy 6 casured value. 2 Folk 1 = 5.11 K  Pass/Fail | Measured Pian |
| PES RS PES RS PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate  = 0.155 ifier Gain  PES-RS +0.300 Vdc                | gain resistors. Record cand value. The second cand value. The second cand value (Vdc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA - 1.78 9  - 1.78 9  - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 | 2 Assy 6 casured value. 2 Folk 1 = 5.11 K  Pass/Fail | Measured Pian |
| PES RS Q PES RS Q PES RS Q PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli  PES = PES =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Measured Value (Vdc) +1.7120 -1.7120 ion of test and calibration n±10 percent of calculate  = 0.155 ifier Gain  PES-RS +0.300 Vdc                | gain resistors. Record cand value. The second cand value. The second cand value (Vdc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA - 1.78 9  - 1.78 9  - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 | 2 Assy 6 casured value. 2 Folk 1 = 5.11 K  Pass/Fail | Measured Pian |
| PES RS PES RS PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli  PES = PES =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measured Value (Vdc)  +1.7120  -1.7120  ion of test and calibration  =10 percent of calculate  =                                                 | gain resistors. Record cand value. The second cand value. The second cand value (P20) 1.11 V 1.11 6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  Rio  Rio  S-97 (20)  Limits (Vds)  1.00 to 1.30  1.00 to 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 Assy 6 casured value.  2 Assy Pass/Fail P          | Pinn          |
| PES RS PES RS PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli  PES = PES =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measured Value (Vdc)  +1.7120  -1.7120  ion of test and calibration n±10 percent of calculate  -1.75  ifier Gain  PES-RS  +0.300 Vdc  -0.300 Vdc | gain resistors. Record cand value. The second cand value of the second cand value of the second value of t | CCA - 1.78 9  - 1.78 9  - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9   - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 | 2 Assy 6 casured value. 2 Folk 1 = 5.11 K  Pass/Fail | Measured Pian |
| PES RS Q. PES (E10)  CW Rotation**  * Signal level funct value shall be withi  6.5.7.5  Ampli  PES = PES =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Measured Value (Vdc)  +1.7120  -1.7120  ion of test and calibration  =10 percent of calculate  =                                                 | gain resistors. Record cand value. The second cand value. The second cand value (P20) 1.11 V 1.11 6 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CCA - 1.78 9  - 1.78 9  - 1.78 9  - 1.78 9  Rio  Rio  S-97 (20)  Limits (Vds)  1.00 to 1.30  1.00 to 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 Assy 6 casured value.  2 Assy Pass/Fail P          | Measured Pian |

# TEST DATA SHEET B-5 (Sheet 3 of 3)

# R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

|                             |                                                       |                                                  | Calculated 37-1 (TT=) *             | Deec (T-1) |
|-----------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------|
| Frequency                   | Measured Value (Hz)                                   | Calculated Value (Hz) * CCA -1 Assy              | Calculated Value (Hz) * CCA -2 Assy | Pass/Fail  |
| AR3 Notch                   | N/A                                                   | V/A                                              | N/A                                 | N/A        |
| AR4 Notch                   |                                                       | N/A                                              | NIA                                 | N/A        |
| AR5 Notch                   | NA                                                    | NA                                               | nd calibration resistors. Rec       | NA         |
| Comments:                   |                                                       | hall be parfo<br>e during an<br>teste<br>worther | rmed at the<br>tenna driv<br>ing.   |            |
|                             |                                                       |                                                  |                                     |            |
| Conducted by:  Verified by: | Test Engineer  Judio Harve  Quality Control Inspector | 5/14/11<br>Date<br>200 5 15 97                   |                                     |            |
| Approved by:                | en <u>ya L. Lynouski t</u><br>DCMC                    | 1000 5/597<br>Date                               | •                                   |            |

**SHOP ORDER: 323737** 

FILE NAME: 7AP\_FSI P/N: 1356006-1-IT DATE: 2-11-98









쭏



ら

FILE NAME: <u>N/A</u> P/N: 1356006-1-IT DATE: <u>2-11-98</u> **SHOP ORDER: 323737** X=974.2mS  $\Delta$ X=41.8mS Y=9.16012  $\Delta$ Y=35.88mV Y=8.77893  $\Delta$ Y=407.1mV CAP TIM BUF SCENR #6 9.5 100 m AX -/Div -DY town when he will the same with the same wit Real V 8.7 1.2 Fxd X 965m Sec

TEST ENG. : ENG

QUALITY ENG.:

PARA: 3.4.4.5 step 13

PAGE 1 of 1
Ste, #6



TEST ENG.:

QUALITY ENG.: \_\_\_\_

PARA: 3.4.4.5 step 14

PAGE \_\_ of \_\_ 5.1 p # 7



TEST ENG. : ENG

QUALITY ENG.: \_\_\_\_\_

PARA: 3.4.4.5 step 15

**SHOP ORDER: 323737** FILE NAME: N/A P/N: 1356006-1-IT DATE: 2-11-98 X=1.581 S  $\Delta X=41.8mS$  Y=10.3107  $\Delta Y=35.88mV$  Y=9.94503  $\Delta Y=361.7mV$ CAP TIM BUF Scene # 9 10.7 110 AX. /Div - AY Real aganimin warmen market V 9.9 1.81 Fxd X 1.57 Sec

TEST ENG. : ENG 252

QUALITY ENG.:

PARA: 3.4.4.5 step 16

PAGE 1 of 1



PAGE \_\_ of \_\_



ひ

**SHOP ORDER: 323737** FILE NAME: N/A P/N: 1356006-1-IT DATE: 2-11-98 X=2.188 S  $\Delta X=41.8mS$  Y=11.4446  $\Delta Y=35.88mV$  Y=11.0868  $\Delta Y=389.2mV$ CAP TIM BUF Scene # 12 11.8 100 m - A X -/Div Real V 11.0 2.41 Fxd X 2.17 Sec

**TEST ENG.:** 

QUALITY ENG.: \_\_\_\_\_ PARA: 3.4.4.5 step 19

PAGE \_\_ of \_\_ F' p 12



TEST ENG. :

QUALITY ENG.: \_\_\_\_\_

PARA: 3.4.4.5 step 20

PAGE 1 of 1 51 7#13





step# 15 ED



Step#16



5tep#17



Stip # 18



step #19



Step#20

**SHOP ORDER: 323737** FILE NAME: <u>NA</u> P/N: 1356006-1-IT DATE: <u>2-11-98</u> X=4.009 S  $\Delta X=41.8mS$  Y=14.865  $\Delta Y=35.88mV$  Y=14.5137  $\Delta Y=381.1mV$ CAP TIM BUF Scene #21 15. 2 100 m /Div MAY Real V 14.4 4.23 Fxd X 4.0 Sec

TEST ENG. : ENG

QUALITY ENG.: \_\_\_\_

PARA: 3.4.4.5 step 28

PAGE \_\_ of \_\_



TEST ENG. : ENG

QUALITY ENG.:

PARA: <u>3 4.4.5</u> step <u>29</u> PAGE 1 of 1

PAGE \_\_ of \_\_ St #22





5tep#2



Step#25









PARA: 3.4.4.5 step 36 PAGE \_\_ of \_\_







Cold Cal # 'sitter)



THE AND MID. TOWING



AE-26002/2C 16 Dec 97

# TEST DATA SHEET 7 (SHEET 1 OF 4) 3.4.4.5: Scan Motion and Jitter Test

Test Setup Verified: Bulling Signature

Shop Order No. <u>323737</u>



| Step No. | Description             | Requirement                                                         | Test Result                      | Pass/Fai |
|----------|-------------------------|---------------------------------------------------------------------|----------------------------------|----------|
| 7        |                         | Stepping Slewing <8 sec period per Figure 8                         | < 8356                           | PASS     |
| 9        | Scene 1-2<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 242 msec                         | PASS     |
|          | •                       | < ±5% jitter per Figure 79<br>< +4% overshoot for 19 msec           | 2 ±5% 5: Her<br>2 + 4% overshoot | PASS     |
| 10       | Scene 2-3<br>3.33° step | <42 msec rise time per Figure 79                                    | 242 msec.                        | PASS     |
|          | ·                       | < ±5% jitter per Figure 79<br>< +4% overshoot for 19 msec           | 2 ± 5% Sitter                    | PASS     |
| 11       | Scene 3-4<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 242 msec                         | PASS     |
|          | <b>-</b>                | < ±5% jitter per Figure 7 9<br>< +4% overshoot for 19 msec          | 2 ±5% jitter<br>2 +4% aushout    | P.455    |
| 12       | Scene 4-5<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 247 msec                         | PASS     |
|          |                         | < ±5% jitter per Figure 7 9<br>< +4% overshoot for 19 msec          | C±5% jitter<br>C+4% overshoot    | PASS     |
| 13       | Scene 5-6<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 242 msec.                        | PASS     |
|          | •                       | < ±5% jitter per Figure 7 9<br>< +4% overshoot for 19 msec          | < +5% jetter<br>< +4% overshoot  | PASS     |
| 14       | Scene 6-7<br>3.33° step | <42 msec rise time per Figure 79                                    | <42 m sec.                       | PASS     |
|          | •                       | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec             | 2 ±5% jitter 2 +4% overshoot     | PASS     |
| 15       | Scene 7-8<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 242M3eC.                         | PASS     |
|          |                         | < ±5% jitter per Figure 4 9<br>< +4% overshoot for 19 msec          | 2 ±5% gitter 2 +4% overshort     | PASS     |
| 16       | Scene 8-9<br>3.33° step | <42 msec rise time per Figure 7 9                                   | 242 msec                         | PASS     |
|          |                         | < ±5% jitter per Figure $\mathcal{V}$ 9 < +4% overshoot for 19 msec | < ±5% Sitter                     | PASS     |

## TEST DATA SHEET 7 (SHEET 2 OF 4) 3.4.4.5: Scan Motion and Jitter Test

| Step No. | Description               | Requirement                                             | Test Result      | Pass/Fail |
|----------|---------------------------|---------------------------------------------------------|------------------|-----------|
| 17       | Scene 9-10<br>3.33° step  | <42 msec rise time per Figure 79                        | 242 nesse.       | PASS      |
|          | •                         | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 2 ± 5%<br>2 4%   | PASS      |
| 18       | Scene 10-11<br>3.33° step | <42 msec rise time per Figure 7-9                       | L42MSEC          | PASS      |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 6 ±5%<br>6 +4%   | FASS      |
| 19       | Scene 11-12<br>3.33° step | <42 msec rise time per Figure 79                        | L48 reese C      | PASS      |
|          | ·                         | < ±5% jitter per Figure 79 < +4% overshoot for 19 msec  | 2 ±5%,<br>2 +4%  | PASS      |
| 20       | Scene 12-13<br>3.33° step | <42 msec rise time per Figure 7 9                       | 242 jusec        | PASS      |
|          | ·                         | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 6 ±5%<br>6 +4%   | PASS      |
| 21       | Scene 13-14<br>3.33° step | <42 msec rise time per Figure 7 9                       | 648 jusec        | PA-55     |
|          | ·                         | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 2 ± 5%<br>2 + 4% | PASS      |
| 22       | Scene 14-15<br>3.33° step | <42 msec rise time per Figure 79                        | 242msec          | PASS      |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 6+4%<br>6+4%     | PASS      |
| 23       | Scene 15-16<br>3.33° step | <42 msec rise time per Figure 7 9                       | 242 MCSC         | PASS      |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec | 2±5%<br>2+4%     | PASS      |
| 24       | Scene 16-17<br>3.33° step | <42 msec rise time per Figure 79                        | 242 msec         | PASS      |
|          |                           | < ±5% jitter per Figure 7 9 < ±4% overshoot for 19 msec | 2+4%             | PASS      |

1. Klean 198 2/11/98 220

# TEST DATA SHEET 7 (SHEET 3 OF 4) 3.4.4.5: Scan Motion and Jitter Test

| Step No. | Description               | Requirement                                                    | Test Result  | Pass/Fai |
|----------|---------------------------|----------------------------------------------------------------|--------------|----------|
| 25       | Scene 17-18<br>3.33° step | <42 msec rise time per Figure 7 9                              | 242 x SEC    | PASS     |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec        | 2±5%<br>2+4% | PX22     |
| 26       | Scene 18-19<br>3.33° step | <42 msec rise time per Figure 7-9                              | 242 sec.     | PASS     |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec        | 245%<br>244% | PASS     |
| 27       | Scene 19-20<br>3.33° step | <42 msec rise time per Figure 7-9                              | 247,2250     | PASS     |
|          |                           | < ±5% jitter per Figure 7 9<br>< +4% overshoot for 19 msec     | 2±5%<br>2+4% | PASS     |
| 28       | Scene 20-21<br>3.33° step | <42 msec rise time per Figure 7-9                              | 242 msec.    | PASS     |
|          |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec        | 2±5%<br>2+4% | PASS     |
| 29       | Scene 21-22<br>3.33° step | <42 msec rise time per Figure 79                               | 242 msec     | PASS     |
| ·        |                           | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec        | 2.44%        | PHSS     |
| 30       | Scene 22-23<br>3.33° step | <42 msec rise time per Figure 79                               | 242 msec     | PASS     |
|          |                           | < ±5% jitter per Figure 7-9<br>< +4% overshoot for 19 msec     | 2±5%<br>2+4% | PASS     |
| 31       | Scene 23-24<br>3.33° step | <42 msec rise time per Figure 79                               | 242 msec     | PASS     |
|          | ·                         | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec        | 2+5%         | P.45.5   |
| 32       | Scene 24-25<br>3.33° step | <42 msec rise time per Figure $\mathcal{V}$ 9                  | 242msec      | PASS     |
| !        | •                         | < ±5% jitter per Figure <b>7</b> 9 < +4% overshoot for 19 msec | 2±5%<br>2+4% | PASS     |

20) 1. Khom / 9 (25) 2/11/99

# TEST DATA SHEET 7 (SHEET 4 OF 4) 3.4.4.5: Scan Motion and Jitter Test

|          | and the second s |                                                                   |                |           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|-----------|
| Step No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Requirement                                                       | Test Result    | Pass/Fail |
| 33       | Scene 25-26<br>3.33° step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <42 msec rise time per Figure 7 9                                 | 242 msec       | PASS      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec           | C+4%           | PASS      |
| 34       | Scene 26-27<br>3.33° step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <42 msec rise time per Figure 79                                  | ZYZMEC         | PASS      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < ±5% jitter per Figure T 9<br>< +4% overshoot for 19 msec        | 2 ±5%<br>2 +4% | PASS      |
| 35       | Scene 27-28<br>3.33° step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <42 msec rise time per Figure-79                                  | 242 msec       | PASS      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < ±5% jitter per Figure <b>7 9</b><br>< +4% overshoot for 19 msec | 2 ±5%<br>2 +4% | PASS      |
| 36       | Scene 28-29<br>3.33° step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <42 msec rise time per Figure 7 9                                 | 242msec        | PASS      |
|          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < ±5% jitter per Figure 7 9 < +4% overshoot for 19 msec           | 25%<br>2+4%    | PASS      |
| 37       | Scene 29-30<br>3.33° step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <42 msec rise time per Figure 7-9                                 | 242msec        | 8455      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < ±5% jitter per Figure 79 < +4% overshoot for 19 msec            | 2±5%<br>2+4%   | PASS      |
| 38       | Scene 30<br>Cold Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.21 sec slew time per Figure 40 12                              | 20.21 Sec.     | P.X->S    |
|          | 35.0° slew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < ±0.165° jitter per Figure +0 13.                                | 2±5%           | PHSS      |
| 39       | Cold Cal -<br>Warm Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.40 sec slew time per Figure >1 /4                              | C0.40 Sec      | 1.455     |
| ·        | 96.67° slew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < ±0.165° jitter per Figure 12/5                                  | 2 ±5%          | PASS      |

ENG R. Khoung 98
252, 2/11/98

| Unit:        | E05-A2        | Test Engineer: Royle S. Missely (252) |
|--------------|---------------|---------------------------------------|
| Serial No.:_ | 202           | Quality Assurance: (226)              |
| Date:        | Feb. 11, 1998 | Customer Representative: 3-19-98      |

**SHOP ORDER: 323737** 

FILE NAME: P/N: 1356006-1-IT DATE: <u>211.98</u> Y=-1.1758m  $\Delta Y=49.99mV$ 4PLB\_C



QUALITY ENG.:

PAGE \_\_\_ of \_\_\_

AE-26002/2C - 16 Dec 97

|             |              | TEST DA<br>3.4.4.6: Pulse        | TA SHEET<br>Load Bus ( |                |           |  |
|-------------|--------------|----------------------------------|------------------------|----------------|-----------|--|
| Test Set    | up Verified: | Shop (                           | Order No               | 323737         |           |  |
| 3.4.4.6:    |              | eak Current and Rise Time Test   |                        |                | · ·       |  |
|             | Step No.     | 1 1                              |                        | Test Result    | Pass/Fail |  |
|             | 4            | <2A peak any place in the sca    | n                      | 984ma          | TASS      |  |
|             | 5            | > 70 µsec rise time, 3.33° step  |                        | 1.2ms          | PASS      |  |
|             | 6            | > 70 µsec rise time, start of WC | slew                   | 1.95ms         | PASS      |  |
|             | 6            | > 70 µsec rise time, end of WC   | slew                   | 2.30ms         | PASS      |  |
|             |              |                                  |                        |                |           |  |
|             |              |                                  |                        | J              |           |  |
| Unit:       | Eos-         | - AZ                             | Test Engi              | neer: Pru (L)  | John      |  |
|             | : 20         |                                  | Ouality A              | ssurance: (39z | 7         |  |
| 501141 140. | •            | <u> </u>                         | Date:                  |                |           |  |



DATE: 2-12-98

TI-1-8008281 :N/9



SHOP ORDER: 323737



## TEST DATA SHEET 9 3.4.4.8: Gain/Phase Margin Test

| Test Setup Verif | ied: You Huthell       | Shop Order No. 323737                                        |                      |
|------------------|------------------------|--------------------------------------------------------------|----------------------|
| 2000 2000 2000   | Signature              |                                                              | <del></del>          |
|                  |                        |                                                              |                      |
| Temperature:     | 25 °C                  |                                                              |                      |
| 3.4.4.8 Step 12: | Gain/Phase Margin Test |                                                              |                      |
|                  | Requirement            | Test Result                                                  | Pass/Fail            |
|                  | 12 dB minimum          | 1 -12.059 db 2 -12.12 db 3 -12.257 db                        | PASS PASS PASS       |
|                  | 25 degrees minimum     | 1 65° 2 67° 3 62°  /4/ /////////////////////////////////     | PASS PASS PASS       |
|                  |                        | * political two measurement syches  customer (equest.  2/12/ | Pass = P<br>Fail = F |
|                  |                        |                                                              |                      |
| Serial No.:      | 05-AZ<br>202<br>16/48  | Test Engineer: Representative:                               | MAR 19 '98           |

DATE: 2/12/98 FILE NAME: 120F\_PSI P/N: 1356006-1-IT **SHOP ORDER: 323737** X=164.45 Hz Ya=-37.085 dBVrms POWER SPEC2 3Avq 0%0vlp Unif 0.0 10.0 /Div dB rms VS -80.0 Hz .312 FxdXY 0 PARA: 3.4.4.9 step 12d PAGE 1 of 1 TEST ENG. : M QUALITY ENG.:

AE-26002/2C 16 Dec 97

## TEST DATA SHEET 10

|       |                             | 3.4.4.9: Opera                    | ational Gain | wiargin Test    |              |
|-------|-----------------------------|-----------------------------------|--------------|-----------------|--------------|
| ect S | Setup Verifi                | ed: Raght V Klosery Sho           | on Order No. | 323737          |              |
| emp   | erature:                    | Signature                         |              |                 |              |
| 1     |                             |                                   |              | Toot Booult     | Pass/Fail    |
|       | Step No.                    | Requirement                       | <del></del>  | Test Result     | Pass/Fall    |
|       |                             | R58 Resistance (Kohms)            |              | 30 72 W         | <del> </del> |
|       | 11                          | T. J. D. J. D. sintana a (Kahara) | 1            | 38.23 K         | PASS         |
|       | Test Pot Resistance (Kohms) | 3                                 | 40.70K       |                 |              |
| - 1   |                             |                                   | 1            | 38.47 K         |              |
|       | 12                          | On the Box Fire manager (LIP)     |              | 16242           | Pass         |
|       |                             | Oscillation Frequency (Hz)        | 3            | 164HZ<br>165 HZ | (475         |
|       |                             |                                   |              | 9.1 db          |              |
|       | 40                          | Onio Manazia O dD minimum         | 1            | 9.4 66          | PASS         |
|       | 16                          | Gain Margin, 9 dB minimum         | 3            | 9.106           |              |
| !     |                             | li.                               | _12          | 1.1 20          |              |
|       |                             |                                   |              |                 | Fail =       |
|       |                             |                                   |              |                 |              |
| it:   | EC<br>No.:                  | 20Z                               |              | Assurance: 2258 | Jim .        |

### **FORMS**

|                                                                          |                               |                  |                                                  | -               |  |  |
|--------------------------------------------------------------------------|-------------------------------|------------------|--------------------------------------------------|-----------------|--|--|
| National Aeronautics and Space Administration  Report Documentation Page |                               |                  |                                                  |                 |  |  |
| 1. Report No.                                                            | 2. Government Accession N     | No.              | 3. Recipient's Catalog                           | No              |  |  |
| · · · · · · · · · · · · · · · · · · ·                                    |                               |                  |                                                  |                 |  |  |
| 4. Title and Subtitle                                                    |                               |                  | 5. Report Date                                   |                 |  |  |
| Integrated Advanced Mid                                                  | crowayo Soundina I            | Init A           | July 199                                         | 8               |  |  |
| (AMSU-A), Performance                                                    | •                             |                  | Performing Organiza                              |                 |  |  |
| (Awoo-A), i enormance                                                    | verilloation Report           |                  |                                                  |                 |  |  |
| 7. Author(s)                                                             |                               |                  | Performing Organiza                              | tion Danert No. |  |  |
| , ,                                                                      |                               |                  | 11185                                            | mon Report No.  |  |  |
| A. Nieto                                                                 |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  | 10. Work Unit No.                                |                 |  |  |
| <ol> <li>Performing Organization Name and<br/>Aerojet</li> </ol>         | Address                       |                  |                                                  |                 |  |  |
| 1100 W. Ho                                                               | illwale                       |                  | 11. Contract or Grant N                          |                 |  |  |
| Azusa, CA                                                                |                               |                  |                                                  | 5-32314         |  |  |
| 12. Sponsoring Agency Name and Ado                                       |                               |                  | 13. Type of Report and                           | Period Covered  |  |  |
| NASA                                                                     |                               |                  | Final                                            |                 |  |  |
| Goddard S                                                                | pace Flight Center            |                  | <ol><li>Sponsoring Agency</li></ol>              | Code            |  |  |
|                                                                          | Maryland 20771                |                  |                                                  |                 |  |  |
| 15. Supplementary Notes                                                  |                               |                  | <del>                                     </del> |                 |  |  |
| ., .                                                                     |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
| 16. ABSTRACT (Maximum 200                                                | <u>.</u>                      | ,,,,,            |                                                  |                 |  |  |
| words )                                                                  |                               |                  |                                                  |                 |  |  |
| ,                                                                        |                               |                  |                                                  |                 |  |  |
| This is the Performance V                                                | erification Papart            | CO AMOU          | A2 Antonna Dwi                                   | o Cubasa. D/N   |  |  |
| 1356006-1, S/N 202 for th                                                |                               |                  |                                                  |                 |  |  |
| 1330000-1, 3/14 202 10/ 11/                                              | e integrated Advan            | cea Microw       | rave Sounding Or                                 | III-A (AMSU-A). |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
|                                                                          |                               |                  |                                                  |                 |  |  |
| <ol><li>Key Words (Suggested by Author(s)</li></ol>                      | 3))                           | 18. Distribution | n Statement                                      |                 |  |  |
| 500                                                                      |                               |                  |                                                  |                 |  |  |
| EOS                                                                      |                               | Unclassified Ur  | nlimited                                         |                 |  |  |
| Microwave Syste                                                          | em                            |                  |                                                  |                 |  |  |
| 19. Security Classif. (of this report)                                   | 20. Security Classif. (of the | nis page)        | 21. No. of pages                                 | 22. Price       |  |  |
| Dantage Co. 4                                                            |                               |                  |                                                  |                 |  |  |
| Unclassified                                                             | Unclassified                  |                  |                                                  |                 |  |  |
| VASA FORM 1626 OCT 86                                                    |                               |                  |                                                  |                 |  |  |

### PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. <u>Recipient's Catalog No.</u>. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. <u>Report Date</u>. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. <u>Key Words.</u> Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification</u> (of this page). Self-explanatory.
- Block 21. <u>No. of Pages.</u> Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

| REPORT DOCUMENTATION PAGE                                                                                                                                                                     |                                                                      |                                                                                                                                      |                                                           | 0                                              | Form<br>Approved<br>QMB No.<br>704-0188                                                                  |                                                                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Public reporting burden fothis collection ofin<br>gathering andmaintaining thedata needed ar<br>collection of information, including suggestic<br>Davis Highway, Suite 1204, Arlington, VA 22 | formation is estired completing an interneducing this 2202-4302, and | natedo average 1 hour per res<br>idreviewing thecollection informa<br>i burdento Washington Headqu<br>to the Office of Management ar | ponse inclu<br>ation. Send<br>larters Send<br>and Budget, | iding the<br>d comme<br>vicesDirec<br>Paperwo  | timefor reviewing instr<br>intsregardingthis burdi<br>ctorate for Information<br>ork Reduction Project ( | uctionssearching existing data source<br>enestimate or any other aspect of this<br>Operationand Reports, 1215 Jefferso<br>(0704-0188). Washington, DC 20503. |  |
| AGENCY USE ONLY ( Leave blank )                                                                                                                                                               |                                                                      | 2. REPORT DATE                                                                                                                       | 3. F                                                      | REPOR                                          | RT TYPE AND DA                                                                                           | ATES COVERED                                                                                                                                                 |  |
| 4. TITLE AND SUBTITLE Integrated Advanced Microwave Sounding Unit-A (AMSU-A), Performance Verification Report                                                                                 |                                                                      |                                                                                                                                      |                                                           | 5. F                                           | 5. FUNDING NUMBERS  NAS 5-32314                                                                          |                                                                                                                                                              |  |
| 6. AUTHOR(S)<br>A. Nieto                                                                                                                                                                      |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702                                                                                                  |                                                                      |                                                                                                                                      |                                                           |                                                | 8. PERFORMING ORGANIZATION REPORT NUMBER  11185  July 1998                                               |                                                                                                                                                              |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>NASA<br>Goddard Space Flight Center<br>Greenbelt, Maryland 20771                                                                   |                                                                      |                                                                                                                                      | 10.                                                       | 10. SPONSORING/MONITORING AGENCY REPORT NUMBER |                                                                                                          |                                                                                                                                                              |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                       |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
|                                                                                                                                                                                               |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
| 12a. DISTRIBUTION/AVAILABILI                                                                                                                                                                  | TY STATEM                                                            | ENT                                                                                                                                  |                                                           | 12b.                                           | DISTRIBUTION                                                                                             | CODE                                                                                                                                                         |  |
| <b></b>                                                                                                                                                                                       |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
| 13. ABSTRACT (Maximum 200 words )  This is the Performance S/N 202 for the Integrate                                                                                                          |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
| 14. SUBJECT TERMS                                                                                                                                                                             |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          | 15. NUMBER OF PAGES                                                                                                                                          |  |
| EOS<br>Microwave System                                                                                                                                                                       |                                                                      |                                                                                                                                      |                                                           |                                                |                                                                                                          | 16. PRICE CODE                                                                                                                                               |  |
| 17. SECURITY CLASSIFICATION                                                                                                                                                                   | 48 CECUDIT                                                           | DV CLASSIFICATION                                                                                                                    |                                                           |                                                |                                                                                                          |                                                                                                                                                              |  |
| OF REPORT Unclassified                                                                                                                                                                        | OF THIS                                                              | ry classification<br>PAGE<br>nclassified                                                                                             | OF A                                                      | ABSTRA                                         | LASSIFICATION<br>CT<br>ISSIFIED                                                                          | 20. LIMITATION OF<br>ABSTRACT<br>SAR                                                                                                                         |  |

#### **GENERAL INSTRUCTIONS FOR COMPLETING SF 298**

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

#### Block 1. Agency Use Only(Leave blank)

Block 2. Report Date. Full publication date including day, month, andyear, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program Element
 WU
 Work Unit Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing OrganizationReport Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. <u>Sponsoring/Monitoring/Agency Reports Number.</u> (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement Denotes</u> public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank.
NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price codeNT/S only).

Block 17 - 19. <u>Security Classifications</u>. <u>Self-explanatory</u>. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

### **DOCUMENT APPROVAL SHEET**



| TITLE                                              | DOCUMENT NO.                           |                               |                   |          |
|----------------------------------------------------|----------------------------------------|-------------------------------|-------------------|----------|
| Performance Verification Report                    | Report 11185                           |                               |                   |          |
| Subassembly and Complete Instrum                   | July 1998                              |                               |                   |          |
| EOS AMSU-A2 Antenna Drive Suba                     | daily 1000                             |                               |                   |          |
| ·                                                  | -<br>-                                 |                               |                   |          |
|                                                    |                                        |                               |                   |          |
| INPUT FROM: DATE                                   | CDRL:                                  | SPECIFICATION ENGINEER:       |                   | DATE     |
| A. Nieto                                           | 208                                    |                               |                   |          |
|                                                    |                                        |                               |                   |          |
| CHECKED BY:                                        | DATE                                   | JOB NUMBER:                   |                   | DATE     |
|                                                    |                                        |                               |                   |          |
| APPROVED SIGNATURES                                | · · · · · · · · · · · · · · · · · · ·  |                               | DEPT. NO.         | DATE     |
|                                                    | 10                                     |                               |                   |          |
|                                                    | 7/1/                                   |                               |                   |          |
| Engineering (T. Higgins)                           | Im Leste                               | ا                             | 7831              | 7/14/98  |
| 0 0                                                | ************************************** | 7 /                           |                   | , ,      |
| Product Team Leader (A. Nieto)                     |                                        |                               | 8341              | 7/14/50  |
|                                                    |                                        |                               |                   | 717 10   |
| o ( = ;                                            | P.K. Patel                             | e i                           |                   | 7/14/98  |
| Systems Engineer (R. Platt)                        | V.K.                                   |                               | 8311              | م ادراد  |
|                                                    | $\mathcal{N}_{i}$                      |                               |                   | 1 /2 /20 |
| Design Assurance (E. Lorenz)                       | Soren                                  |                               | 8331              | 7/15/48  |
|                                                    |                                        |                               |                   |          |
| Quality Assurance (R. Taylor)                      | Villen                                 | - For                         | 7831              | 7/15/98  |
|                                                    |                                        | /                             |                   |          |
| Technical Director/PMO (R. Haue                    | envass PNOH                            | monioar                       | 4001              | 7/15/98  |
| Toomilaa Birodom Mo (14. Hade                      | 31 (440)                               | 1                             | <del>-</del> 7001 |          |
| Configuration Management (   Co                    |                                        | A., A                         | 0004              | 1116198  |
| Configuration Management (J. Ca                    | avanaugn)                              | auanaice >                    | 8361              | ', ' ' ' |
|                                                    | ( )                                    | ( )                           |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        | :                             |                   |          |
|                                                    |                                        |                               | İ                 |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
| By my signature, I certify the above document ha   | e boon ravioued by me an               | ed concurs with the technical |                   |          |
| requirements related to my area of responsibility. | s been reviewed by the an              | d concurs with the technical  |                   |          |
|                                                    |                                        |                               |                   |          |
| RELEASE (Data Center) FINAL                        |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |
|                                                    |                                        |                               |                   |          |